Time-Resolved Ellipsometry: A Historical Perspective

Stefan Zollner

Department of Physics, New Mexico State University, Las Cruces, NM

http://ellipsometry.nmsu.edu

NSF: DMRand DMR-1505172

Dust storm in Las Cruces

http://ellipsometry.nmsu.edu

Dielectric response to a time-varying field

Generalized plane wave E field, ignore spatial dispersion

$$D = \varepsilon_0 E + P = \varepsilon \varepsilon_0 E$$
$$\vec{D}(\vec{r},t) = \int \iiint \varepsilon(\vec{r} - \vec{r}', t - t') \varepsilon_0 \vec{E}(\vec{r}',t') dt' d^3 \vec{r}'$$

Carrier diffusion makes ε nonlocal Also: P.Y. Yu, SSC 1971

$$\vec{D}(\vec{k},\omega) = \varepsilon(\omega)\varepsilon_0\vec{E}(\vec{k},\omega)$$

Femtosecond Ellipsometry:

 \rightarrow

$$\vec{E}(\vec{r},t) = \vec{E}_{1}(t)e^{i(\vec{k}_{1}\cdot\vec{r}-\omega_{1}t)} + \vec{E}_{2}(t)e^{i(\vec{k}_{2}\cdot\vec{r}-\omega_{2}t)}$$

Pump beam changes $\varepsilon(\omega)$; measurable by the probe beam. Complication: $\Delta\varepsilon(z, \omega)$ is a function of z (through $E_1(z)$). I have never seen a theory for this (perhaps second order). What if there is no pump beam, but the probe beam is shorter than the lifetime of the excited state (e.g., an exciton)?

D.H. Auston and C.V. Shank, Phys. Rev. Lett. 32, 1120 (1974)

D.H. Auston et al., Appl. Phys. Lett. 33, 437 (1978)

- Polarized reflectance (R_p, R_s)
- Measures $tan^2\psi$
- Pump: 1.06 μm, 50 ns, single shot, 3 mm spot, 0.65 to 16 mJ/cm²
- Probe: 633 nm HeNe CW
- Fast photodiodes for detection
- Sample: As-implanted Si (111)
- Si melts above 2 J/cm² (metallic response), freezes within ns time scale

G.E. Jellison, Jr., and D.H. Lowndes, Appl. Opt. 24, 2948 (1985)

- Wollaston prism analyzer PCSA ellipsometer
- Pump: KrF, 248 nm, 35 ns, 1 J/cm²
- Probe: CW HeNe laser (633 nm, 0.5 mW)
- Spot size: 20 by 50 μm
- Two fast photodiodes (2 ns) or streak camera (1 ps)
- Single shot experiment
- Zone averaging reduces errors
- Pump melts Si surface (50 ns)
- Pump burns off organic contamination on the surface.
- Rapid cooling after melting.
- Native oxide not affected (or regrows rapidly).

Glezer, Siegal, Huang, <u>E. Mazur</u>, Phys. Rev. B **51**, 6959 (1995) Huang, Callan, Glezer, <u>E. Mazur</u>, Phys. Rev. Lett. **80**, 185 (1998) Roeser, Kim, Callan, Huang, Siegal, <u>Mazur</u>, Rev. Sci. Instrum. **74**, 3413 (2003)

- Double-angle R_p yields ϵ (ϕ =71°, 76° near $\phi_{Brewster}$)
- Pump: 1.9 eV, 70 fs, <250 mJ/cm², 10 Hz
- Two-color probe: 2.2+4.4 eV, 70 fs, 25 μm
- GaAs (110): Damage threshold 100 mJ/cm²
- Oxide correction (4 nm).
- Drude response and <u>band gap renormalization</u> (band gap collapses).

Glezer, Siegal, Huang, E. Mazur, Phys. Rev. B 51, 6959 (1995) Huang, Callan, Glezer, <u>E. Mazur</u>, Phys. Rev. Lett. 80, 185 (1998) Huang, Callan, Glezer, E. Mazur, Phys. Rev. Lett. **60**, 165 (1996)Roeser, Kim, Callan, Huang, Siegal, Mazur, Rev. Sci. Instrum. **74**, 3413 (2003)• Double-angle R_p yields ε (ϕ =58°, 75°)• Pump: 1.9 eV, 70 fs, <250 mJ/cm², 10 Hz</td>• White light probe: 1.5.2 5 eV/ 70 fs

- White-light probe: 1.5-3.5 eV, 70 fs
- GaAs (100): Damage threshold 100 mJ/cm²
- Oxide + chirp correction
- Drude response (free carriers)
- **Exciton screening (excitons lose amplitude)**
- Lattice heating 140 fs, 7 ps (Lautenschlager)
- Lattice disorder after 4 ps (high flux)
- **Band gap renormalization**

40

30

20

10

-10Ĭ.5

40

30

10

Ы

no pump

2.5

energy (eV)

E₁ exciton

screening

3.0

2.0

 $0.32 F_{th}$

500 fs

(a)

3.5

(b)

ezer, Siegal, Huang, E. Mazur, Phys. Rev. Lett. **80**, 185 (1998) Iuang, Callan, Glezer, E. Mazur, Phys. Rev. Lett. **80**, 185 (1998) Roeser, Kim, Callan, Huang, Siegal, Mazur, Rev. Sci. Instrum. **74**, 3413 (20($\frac{1}{9}$ 40)) vields ε (ϕ =58°, 75°)

(b)

dielectric function

00 0.70 2

ereflectivity, F

normal-incidence r 0.50 0.20 1

, 0.50 ∟___ 1.5

0.60

3.5

40

20

_20∟ 1.5

(C)

• 4.0 F_{cr}

♦ 1.6 F_{cr} ▼ 0.6 F

200 fs

2.0

2.0

2.5

energy (eV)

2.5

energy (eV)

- Pump: 1.9 eV, 70 fs, <250 mJ/cm², 10 Hz
- Te: coherent phonon oscillations (3 THz)

320 J/m²

-1 ps

3.0

 a-GeSb (phase change memories): amorphous to crystalline transition is very fast (200 fs) 60

GeSb

2.5

energy (eV)

2.0

60

40

–20∟ 1.5

dielectric function

(a)

H. Choo, X. Hu, M.C. Downer, V. Kesan, Appl. Phys. Lett 63, 1507 (1993) H.R. Choo, Ph.D. thesis, Univ. of Texas at Austin (1993)

- Pump-probe: 2 eV CPM, 100 fs, 10 $\mu m,$ 1-5 nJ, 1 MHz
- PCSA ellipsometer (P=0,sC,A=45°), φ=69°
- True zero-order mica quarter-wave plate compensator with AR coating (T>90%); rotation of P wobbles probe spot.
- A fixed (rejects scattered pump beam)
- Calcite P and A (extinction <10⁻⁵)
- Glan-laser P (less chirp)
- Glan-Thompson A (large acceptance)
- Rapid-scan (47 Hz) time delay for pump beam avoids 1/f noise of laser.
- Amplify difference of DA and DB.
- SHG defines zero time delay.

H. Choo, X. Hu, M.C. Downer, V. Kesan, Appl. Phys. Lett 63, 1507 (1993)

- Pump-probe: 2 eV, 100 fs, 10 $\mu m,$ 1-5 nJ, 1 MHz
- PCSA ellipsometer (P=0,sC,A=45°), φ=69°
- True zero-order mica quarter-wave plate compensator; rotation of P wobbles probe spot.
- A fixed (rejects scattered pump beam)
- Rapid-scan time delay.
- Ambipolar diffusion in Ge, band gap renormalization
- Thermal band gap shrinkage (lattice heating), BGR, interband scattering (lh-hh, IVS), bleaching

S. Zollner, K.D. Myers, J.M. Dolan, D.W. Bailey, C.J. Stanton, Thin Solid Films 313-314, 568 (1998); Solid-State Commun. 104, 55 (1997).

- Chris Stanton (U of FL, Gainesville): Monte Carlo simulation
- Ti-sapphire excitation at 1.5 eV, 100 fs, 85 MHz

Diffusion

0

-5

-10 -15 -15 -20

-25

-30

0

(hh to lh and Γ to X to L), band gap renormalization, excitonic screening, Pauli blocking

5

з delay time τ (ps) 6 0

S. Zollner, K.D. Myers, J.M. Dolan, D.W. Bailey, C.J. Stanton, Thin Solid Films **313-314**, 568 (1998); **Solid-State Commun. 104, 55 (1997).**

- Ti-sapphire excitation at 1.5 eV, 100 fs, 85 MHz
- Photon energy determines penetration depth (diffusion).
- Pump-probe reflectance, 180 mW, 2 nJ, 40 μ m, 3.6 kW/cm², 4 × 10¹⁸ cm⁻³
- Time-dependent diffusivity, carrier relaxation (hh to lh and Γ to X to L), <u>band gap renormalization</u>, excitonic screening, Pauli blocking, coherent artifact
- Do we see phonon oscillations?

M.Y. Frankel, Optics Letters **19**, 1252 (1994)

- Pump: 2 eV CPM, 150 fs, 20 μm, 7.4 mW, 100 MHz
- PCSA ellipsometer (P=90°;2C=40°,145°;A=-45°), φ=70°
- Differential lock-in detection, 3.8 MHz modulation
- Electron heating: redistribution of electrons around Fermi edge modulates d-d interband absorption (Elsayed-Ali, PRB **47**, 13599, 1993).

H. Yoneda, H. Morikami, K. Ueda, R.M. More, Phys. Rev. Lett. 91, 075004 (2003)

- Pump: 248 nm, 300 fs, amplified by Kr*F excimer laser, 2–50 TW/cm².
- Probe: 745 nm, 120 fs Ti:sapphire, 64° AOI, P=45°.
- Four-detector polarimeter. Rotating sample (single-shot).
- Laser heating of a Au target (40 eV/atom) produces liquid and vapor/plasma.

Kruglyak, Hicken, Ali, Hickey, Pym, B.K. Tanner, Phys. Rev. B 71, 233104 (2005)

- Ti-sapphire, 1.58 eV, 80 MHz, 90 fs, 2 nJ pump
- Probe: 27° AOI, p-polarized
- fs ellipsometry of Ag, Cu, Ag, Ni, Pd, Ti, Zr, Hf on Si
- SIFE: Specular inverse Faraday effect
- SOKE: Specular optical Kerr effect
- Nonlinear susceptibility, $\Delta \epsilon$ not calculated

Boschini, Hedayat, Piovera, Dallera, Gupta, Carpene, Rev. Sci. Instrum. 86, 013909 (2015)

Acharya, Chouthe, Graener, Böntgen, Sturm, Schmidt-Grund, Grundmann, Seifert, J. Appl. Phys. 115 (2014)

D.S. Kim and P. Yu, Appl. Phys. Lett. 56, 2210 (1990)

- Time-resolved Raman spectroscopy with a single pulse.
- The leading edge of the pulse is the pump, the trailing edge is the probe (needs convolution).
- This particular experiment did not have sufficient time resolution to measure what the authors claimed, but it is worthwhile to keep this scheme ir mind.

Samples and Topics

- Germanium and GaAs, GaSb, InP, Si
 - Diffusion, band gap renormalization, interband scattering
 - Lattice heating (redshift and broadening of critical points)
 - Excitonic screening near E_0 and $\mathsf{E}_0\text{+}\Delta_0$
- GaP: Similar to Ge. Larger band gap accessible with lasers.
- ZnO/GaP/GaN: Screening of excitons (bulk or thin films on Si).
 Exciton transport across interfaces.
- SrTiO₃: Screening excitons in bulk and type I or II QW.
- Au and other non-magnetic metals: Electron heating/cooling.
- Ni: Heat electrons above T_c (tune T_c with Ni:Pt and Ni:V alloys).
- Phase change materials such as GeSb
- Coherent phonon oscillations (tellurium).

